

### The Power of Many: Securing Organisational Identity Through Distributed Key Management



Cyber-security Excellence Hub in Estonia and South Moravia Mariia Bakhtina<sup>1</sup>, Jan Kvapil<sup>2</sup>, Petr Švenda<sup>2</sup>, and Raimundas Matulevičius<sup>1</sup>

<sup>1</sup> University of Tartu, Tartu, Estonia
 <sup>2</sup> Masaryk University, Brno, Czech Republic

36th International Conference on Advanced Information Systems Engineering (CAiSE 2024), Limassol, Cyprus, June 03-07, 2024

## **Motivation**



Doctor

Health record request

## **Motivation**

- **Organisational Digital Identity** defines an organisation and its attributes for other entities through credentials
- Credentials certificates based on Public Key Infrastructure



# **Organisational Digital Identity**

**Public Key Infrastructure** preserves integrity and authenticity of the data through signing the message



## **Organisational Digital Identity**



## **Problem Statement**

#### Who controls private key? Do we trust this entity?

Custodian — administrator, system component, third-party controller



**Centralised control over an organisation's private key** is a threat to message authenticity and integrity

## **Problem Statement**

#### Who controls private key? Do we trust this entity?

Custodian — administrator, system component, third-party controller



**Centralised control over an organisation's private key** is a threat to message authenticity and integrity

## Problem Statement

Do we need to have a fully trusted ODI controller?

Zero Trust strategy:

eliminate implicit trust - verify instead

Demonstration

**Research Question** 

How to secure organisational identity through key management mechanisms for achieving zero trust?

## **Design Science Research Method**



<sup>1</sup> Bakhtina et al. "On the Shift to Decentralised Identity Management in Distributed Data Exchange Systems", SAC'23 <sup>2</sup> Bakhtina et al. "A Decentralised Public Key Infrastructure for X-Road", SP2I @ ARES'23

Peffers, Ken, et al. "A design science research methodology for information systems research." Journal of management information systems 24.3 (2007): 45-77

## **Key Management Mechanisms**

Review of key management mechanisms

- Stages
- Affected non-functional system characteristics



## Distributed Key Management System (DKMS)

#### Partial custody over ODI

- Distribution of keys among multiple semi-trusted custodians
- Threshold signature



# Distributed Key Management System (DKMS)



ି ଅନ୍ୟୁର୍ଦ୍ଧ ଅନ୍ୟୁର୍ଦ୍ଧ

Threshold signing service



M out of N custodians (threshold) contribute to signing

## Distributed Key Management System (DKMS)

- Distribution of trust among the organisational parties employees and IS components
- Maintaining access control in case of employee turnover
- Cryptographic enforcement of access policies

## Case: X-Road Data Exchange System

#### Context:

- E-government infrastructure
- Private companies network

#### Goals:

- Trustlessness
- Traceability
- Preventing privilege misuse
- Backward compatibility
- Decentralisation & Multiple users



X-Road architecture https://x-road.global/architecture

# **Testing Scenario**







As-Is: 1 fully trusted custodian

To-Be: To 5 semi-trusted custodians Access rule enforced: 3 out of 5



#### Round Trip Time (RTT) comparison

for Client-Provider data exchange (the Client's signing token varies)

| Client's token:             | SoftToken | SoftHSM | YubiKey 5         | TPM NTC 7.2.3.1   | this work |
|-----------------------------|-----------|---------|-------------------|-------------------|-----------|
| mean RTT                    | 82ms      | 75 ms   | 216 ms            | 260ms             | 276 ms    |
| ${\rm mean}~{\rm slowdown}$ | 1.0x      | 0.92x   | $2.65 \mathrm{x}$ | $3.18 \mathrm{x}$ | 3.38x     |

- Performance
  - Overhead from the network and signing platform
  - (Optional) Employees's involvement is an added activity
- Legal implications
- Key lifecycle
  - Post-operational and destroyed phases are not considered



- a **distributed key management system (DKMS)** for achieving zero trust
- proof-of-concept implementation for X-Road

• Analyse the legal implications of partial custody

 Validate DKMS (running X-Road instance and other data exchange systems)





### Thank you for attention!

Mariia Bakhtina bakhtina@ut.ee



Jan Kvapil <u>kvapil@mail.muni.cz</u>

Petr Švenda <u>svenda@fi.muni.cz</u>

https://chess-eu.cs.ut.ee/

Raimundas Matulevičius <u>rma@ut.ee</u>

 Funded by

 the European Union

Funded by the European Union under Grant Agreement No. 101087529.

Credits: the used icons are from www.flaticon.com