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Introduction
• Existing work: 
• Timelines, "Migration Challenges", PQC Migration Handbook 

• The issue: 
• How to actually migrate? Does a general security engineer have 

everything in their disposal for that? 
• Our work: 
• Explore and support current FOSS state-of-the-art 
• Focus on engineering aspects of PQ implementations 
• Gather experience, problems, and remarks
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https://english.aivd.nl/publications/publications/2023/04/04/the-pqc-migration-handbook


Our Experience with PQC Implementation
• e-Governance applications and frameworks 
• Web-eID (Authentication) 
• CDOC2 (Encryption) 
• ASiC-E (Digital Signatures) 
• IVXV (e-Voting) 

• Supporting projects 
• PQ library wrappers, extensions for crypto libraries 
• Lattice-based crypto development kit 
• PQ OCSP, TSA solutions
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How to Begin?

Preparation, Technological Constraints, Implementation
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Preparation
• Identify all PKI objects and their lifetime in the system 
• understand the extent of required changes 
• dig. signatures, key agreements, ... 

• Beware of MTUs 
• PQ = bigger object sizes, sometimes even variable size (Falcon) 

• Beware of changing data formats 
• ASN1, Base64, PEM, JOSE, other...
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BPMN Example
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Technological Constraints
• Assess current boundaries of the system 
• Increased performance, memory, and storage overhead 
• Limited devices and slow networks 

• Possible protocol adjustments: 
• streaming public keys and signatures into memory 
• key encapsulation instead of digital signatures (credit cards) 
• objects allocations on embedded devices (stack → heap)
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https://doi.org/10.1007/978-3-030-81293-5_12
https://link.springer.com/book/10.1007/978-3-031-22829-2


Implementation
• Start at the beginning of the data lifecycle → step-by-step 
• Extensions, adjustments, adaptations of crypto libraries 
• Expect future changes - standardization is not over! 
• → Crypto agility 

• Rest of this presentation
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Where to Begin?

PQ Algorithms, Cryptographic Libraries, Encodings, 
Hybrid modes
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Post-Quantum Algorithms
• NIST standardization process (2016-now) 

• Key Encapsulation Mechanisms: 
1. Kyber → ML-KEM (FIPS 203) 
2. + round 4 (soon) 

• Digital signatures: 
1. Dilithium → ML-DSA (FIPS 204) 
2. Sphincs+ → SLH-DSA (FIPS 205) 
3. Falcon → FN-DSA (TBD Q3 2024) 
4. + "on-ramp" round 1 (not before 2027) 

• other evaluation efforts (BSI, ENISA, ...) → possibly more algorithms
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https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures


Cryptographic Libraries
• PQClean (C) 
• Cleaned aggregation of NIST-submitted algorithms (latest + last round) 
• Source of source-code (i.e. not a library) 

• libOQS (C) 
• + wrappers for C++, Python, Java, Go, .NET, and Rust 
• + applications built with libOQS (OpenSSL, OpenSSH, OpenVPN forks) 

• BouncyCastle (Java), rustpq/pqcrypto (Rust), pqm4 (C, Cortex-M4) 
• custom wrappers of libOQS
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https://github.com/PQClean/PQClean
https://github.com/open-quantum-safe/liboqs
http://www.apple.com
https://github.com/rustpq/pqcrypto
http://www.apple.com


Algorithm Identifiers
• ASN.1 Object Identifiers 
• OQS, IETF Hackathon OID lists 

• JSON Web Algorithms 
• RFC, but only for KEMs 

• XML Signature Syntax Algorithms 
• ... 

• Other identifiers
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https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md
https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://www.ietf.org/archive/id/draft-reddy-cose-jose-pqc-kem-00.html


Object Encoding
• Raw bytes 
• originally NIST submission rule, now in 

libOQS 
• output from one function = input for second 

function 
• PQ ASN.1 structures 
• IETF Hackathon - PQC certificates  

• tries to solve compatibility issues and 
unify structures 

• BouncyCastle maps to classes
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https://github.com/IETF-Hackathon/pqc-certificates


Hybrid mode (PQ + classic crypto)
• Post-quantum cryptography: 
• ensures the longevity of data protection 

• Classical cryptography: 
• protects against emerging threats on unexplored PQC 

• Most common modes: concatenation or sequential 
• both can have their issues → nothing concrete yet 
• RFC Draft for hybrid KEM in TLS1.3 uses concatenation 
• Cloudflare and Google Chrome follow RFC draft using concatenation 

(X25519 + Kyber-768)
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https://eprint.iacr.org/2022/1225
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/


Engineering Obstacles

PQC Implementation is far from straight-forward
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Algorithm Identifiers
• ASN.1 Object Identifiers 
• OQS, IETF Hackathon OID lists 

• JSON Web Algorithms 
• RFC, but only for KEMs 

• XML Signature Syntax Algorithms 
• ... 

• Other identifiers

17 Public

https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md
https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://www.ietf.org/archive/id/draft-reddy-cose-jose-pqc-kem-00.html


Algorithm Identifiers
• ASN.1 Object Identifiers 

• Wild West 
• OQS → BouncyCastle → OQS → IETF Hackathon → ??? 
• ML-KEM vs CRYSTALS-Kyber? 

• JSON Web Algorithms 
• PQ alternative to ES256? 
• Recent RFC, but only for KEMs 

• XML Signature Syntax Algorithms 
• PQ alternative to http://www.w3.org/2001/04/xmldsig-

more#rsa-sha256?
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https://github.com/open-quantum-safe/oqs-provider/issues/351
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md
https://github.com/bcgit/bc-java/blob/91c3c6018ab353f653749b9b56d6de384a31ec3c/core/src/main/java/org/bouncycastle/asn1/bc/BCObjectIdentifiers.java
https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://www.ietf.org/archive/id/draft-reddy-cose-jose-pqc-kem-00.html
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256


Object Encoding
• Most crypto libraries have classical algorithms 

hard-coded 
• PHP extension for OpenSSL, PHPSecLib 
• cryptography, asn1crypto (Python) 
• crypto (Go) 

• Two options: 
• Extend vs circumvent
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Interoperability Awareness
• Growing with system complexity 
• Active thinking about all components 
• Identifiers, encoding, MTU, processing
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Cryptographic Tokens
• Smart cards 
• Chip manufacturers? 
• Embedded devices for local testing 

purposes 
• Performance OK (ESP32-S3) 
• Memory OK, but complicated 
• Safety not OK (no HSM, TPM, 

not certifiable) 
• Protocol adjustments might be 

required (stack → heap, streaming)
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https://research.cyber.ee/~janwil/publ/pqauth.pdf
https://research.cyber.ee/~janwil/publ/pqauth.pdf


Maturity of PQ Custom Crypto
• What if application requires: 
• Multi Party Computation? 
• Homomorphic Encryption? 
• Special features? 

• e.g. ElGamal in vote encryption - special 
decryption without private key  

• Still lot of R&D to be done
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Miscellaneous PQ Engineering Efforts
• All the little things 
• (OQS-)OpenSSL encodes private keys as: 

• 0×04 or 0×03 || length || private_key || public_key 
• Custom wrappers → data type conversions 
• Adding single lines into dependencies' files to support PQ 
• Build issues, insufficient or confusing documentation
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Conclusions
• Implementing PQC today is... 
• ...complicated 

• not straight-forward 
• different libraries → different approaches and documentation level 
• computational constraints, adaptation and tweaking 

• ...doable 
• ...worth it 

• long-term data protection, experience, possibility to set good practices 

• ...helpful 
• big space for open-source PQ contributions, reduce confusion, helps shaping the 

industry
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https://cyber.ee/ 
info@cyber.ee 
cybernetica 
CyberneticaAS 
cybernetica_ee 
Cybernetica

Thank you for listening!

Petr Muzikant, petr.muzikant@cyber.ee

References: 
• links in presentation 
• PQ authentication framework 
• Notes on PQC in PHP 
• write me an email!
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https://www.facebook.com/CyberneticaAS
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https://www.linkedin.com/company/62561
mailto:petr.muzikant@cyber.ee
https://github.com/Muzosh/Post-Quantum-Authentication-On-The-Web
https://github.com/Muzosh/OQS-openssl-in-PHP

