
Post-Quantum Cryptography
for Engineers: Technical
Overview

The Future Cryptography Conference
13.05.2024, Tallinn

Petr Muzikant
Information Security Research Institute @ Cybernetica AS, Estonia
[This presentation includes clickable links]

Funded by the European Union under Grant Agreement No. 101087529. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or European Research
Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

http://www.example.com

Presentation Outline
1. Introduction
2. Our Experience with PQC Implementation
3. How to Begin?
• Preparations, Technological Constraints, Implementation

4.Where to Begin?
• PQ Algorithms, Cryptographic Libraries, Encodings, Hybrid modes

5. Engineering Obstacles
6. Conclusions

2

Introduction
• Existing work:
• Timelines, "Migration Challenges", PQC Migration Handbook

• The issue:
• How to actually migrate? Does a general security engineer have

everything in their disposal for that?
• Our work:
• Explore and support current FOSS state-of-the-art
• Focus on engineering aspects of PQ implementations
• Gather experience, problems, and remarks

3

https://english.aivd.nl/publications/publications/2023/04/04/the-pqc-migration-handbook

Our Experience with PQC Implementation
• e-Governance applications and frameworks
• Web-eID (Authentication)
• CDOC2 (Encryption)
• ASiC-E (Digital Signatures)
• IVXV (e-Voting)

• Supporting projects
• PQ library wrappers, extensions for crypto libraries
• Lattice-based crypto development kit
• PQ OCSP, TSA solutions

4

How to Begin?

Preparation, Technological Constraints, Implementation

5

Preparation
• Identify all PKI objects and their lifetime in the system
• understand the extent of required changes
• dig. signatures, key agreements, ...

• Beware of MTUs
• PQ = bigger object sizes, sometimes even variable size (Falcon)

• Beware of changing data formats
• ASN1, Base64, PEM, JOSE, other...

6

BPMN Example

7

Technological Constraints
• Assess current boundaries of the system
• Increased performance, memory, and storage overhead
• Limited devices and slow networks

• Possible protocol adjustments:
• streaming public keys and signatures into memory
• key encapsulation instead of digital signatures (credit cards)
• objects allocations on embedded devices (stack → heap)

8

https://doi.org/10.1007/978-3-030-81293-5_12
https://link.springer.com/book/10.1007/978-3-031-22829-2

Implementation
• Start at the beginning of the data lifecycle → step-by-step
• Extensions, adjustments, adaptations of crypto libraries
• Expect future changes - standardization is not over!
• → Crypto agility

• Rest of this presentation

9

Where to Begin?

PQ Algorithms, Cryptographic Libraries, Encodings,
Hybrid modes

10

Post-Quantum Algorithms
• NIST standardization process (2016-now)

• Key Encapsulation Mechanisms:
1. Kyber → ML-KEM (FIPS 203)
2. + round 4 (soon)

• Digital signatures:
1. Dilithium → ML-DSA (FIPS 204)
2. Sphincs+ → SLH-DSA (FIPS 205)
3. Falcon → FN-DSA (TBD Q3 2024)
4. + "on-ramp" round 1 (not before 2027)

• other evaluation efforts (BSI, ENISA, ...) → possibly more algorithms

11

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures

Cryptographic Libraries
• PQClean (C)
• Cleaned aggregation of NIST-submitted algorithms (latest + last round)
• Source of source-code (i.e. not a library)

• libOQS (C)
• + wrappers for C++, Python, Java, Go, .NET, and Rust
• + applications built with libOQS (OpenSSL, OpenSSH, OpenVPN forks)

• BouncyCastle (Java), rustpq/pqcrypto (Rust), pqm4 (C, Cortex-M4)
• custom wrappers of libOQS

12

https://github.com/PQClean/PQClean
https://github.com/open-quantum-safe/liboqs
http://www.apple.com
https://github.com/rustpq/pqcrypto
http://www.apple.com

Algorithm Identifiers
• ASN.1 Object Identifiers
• OQS, IETF Hackathon OID lists

• JSON Web Algorithms
• RFC, but only for KEMs

• XML Signature Syntax Algorithms
• ...

• Other identifiers

13 Public

https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md
https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://www.ietf.org/archive/id/draft-reddy-cose-jose-pqc-kem-00.html

Object Encoding
• Raw bytes
• originally NIST submission rule, now in

libOQS
• output from one function = input for second

function
• PQ ASN.1 structures
• IETF Hackathon - PQC certificates

• tries to solve compatibility issues and
unify structures

• BouncyCastle maps to classes

14 Public

https://github.com/IETF-Hackathon/pqc-certificates

Hybrid mode (PQ + classic crypto)
• Post-quantum cryptography:
• ensures the longevity of data protection

• Classical cryptography:
• protects against emerging threats on unexplored PQC

• Most common modes: concatenation or sequential
• both can have their issues → nothing concrete yet
• RFC Draft for hybrid KEM in TLS1.3 uses concatenation
• Cloudflare and Google Chrome follow RFC draft using concatenation

(X25519 + Kyber-768)

15

https://eprint.iacr.org/2022/1225
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/

Engineering Obstacles

PQC Implementation is far from straight-forward

16

Algorithm Identifiers
• ASN.1 Object Identifiers
• OQS, IETF Hackathon OID lists

• JSON Web Algorithms
• RFC, but only for KEMs

• XML Signature Syntax Algorithms
• ...

• Other identifiers

17 Public

https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md
https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://www.ietf.org/archive/id/draft-reddy-cose-jose-pqc-kem-00.html

Algorithm Identifiers
• ASN.1 Object Identifiers

• Wild West
• OQS → BouncyCastle → OQS → IETF Hackathon → ???
• ML-KEM vs CRYSTALS-Kyber?

• JSON Web Algorithms
• PQ alternative to ES256?
• Recent RFC, but only for KEMs

• XML Signature Syntax Algorithms
• PQ alternative to http://www.w3.org/2001/04/xmldsig-

more#rsa-sha256?

18 Public

https://github.com/open-quantum-safe/oqs-provider/issues/351
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md
https://github.com/bcgit/bc-java/blob/91c3c6018ab353f653749b9b56d6de384a31ec3c/core/src/main/java/org/bouncycastle/asn1/bc/BCObjectIdentifiers.java
https://github.com/IETF-Hackathon/pqc-certificates/blob/master/docs/oid_mapping.md
https://www.ietf.org/archive/id/draft-reddy-cose-jose-pqc-kem-00.html
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

Object Encoding
• Most crypto libraries have classical algorithms

hard-coded
• PHP extension for OpenSSL, PHPSecLib
• cryptography, asn1crypto (Python)
• crypto (Go)

• Two options:
• Extend vs circumvent

19 Public

Interoperability Awareness
• Growing with system complexity
• Active thinking about all components
• Identifiers, encoding, MTU, processing

20 Public

Cryptographic Tokens
• Smart cards
• Chip manufacturers?
• Embedded devices for local testing

purposes
• Performance OK (ESP32-S3)
• Memory OK, but complicated
• Safety not OK (no HSM, TPM,

not certifiable)
• Protocol adjustments might be

required (stack → heap, streaming)

Public

https://research.cyber.ee/~janwil/publ/pqauth.pdf
https://research.cyber.ee/~janwil/publ/pqauth.pdf

Maturity of PQ Custom Crypto
• What if application requires:
• Multi Party Computation?
• Homomorphic Encryption?
• Special features?

• e.g. ElGamal in vote encryption - special
decryption without private key

• Still lot of R&D to be done

22 Public

Miscellaneous PQ Engineering Efforts
• All the little things
• (OQS-)OpenSSL encodes private keys as:

• 0×04 or 0×03 || length || private_key || public_key
• Custom wrappers → data type conversions
• Adding single lines into dependencies' files to support PQ
• Build issues, insufficient or confusing documentation

23

Conclusions
• Implementing PQC today is...
• ...complicated

• not straight-forward
• different libraries → different approaches and documentation level
• computational constraints, adaptation and tweaking

• ...doable
• ...worth it

• long-term data protection, experience, possibility to set good practices

• ...helpful
• big space for open-source PQ contributions, reduce confusion, helps shaping the

industry

24

https://cyber.ee/
info@cyber.ee
cybernetica
CyberneticaAS
cybernetica_ee
Cybernetica

Thank you for listening!

Petr Muzikant, petr.muzikant@cyber.ee

References:
• links in presentation
• PQ authentication framework
• Notes on PQC in PHP
• write me an email!

Public

https://cyber.ee/
mailto:info@cyber.ee
https://twitter.com/cybernetica
https://www.facebook.com/CyberneticaAS
https://www.instagram.com/cybernetica_ee/
https://www.linkedin.com/company/62561
mailto:petr.muzikant@cyber.ee
https://github.com/Muzosh/Post-Quantum-Authentication-On-The-Web
https://github.com/Muzosh/OQS-openssl-in-PHP

