Two-party ECDSA with
JavaCard-based smartcards

Antonin Dufkal, Peeter Laud?2, Petr Svendat

CR, CS

Centre
Cryptogre Mv d

1Centre for Research on Cryptography and Security, Masaryk University, Czechia
2Cybernetica, Estonia

*Funded by the European Union under Grant Agreement No. 101087529 (CHESS project) www.fi.muni.cz/crocs

CR&,CS

Overview

« Overall goal: 2-of-2 ECDSA with one party being cryptographic
smartcard, second party being mobile phone/PC/server...
1. Better protection of private key,
2. Possibility of enforcement of a signing policy, l
3. Easy key revocation functionality |
4. ..) ture

« Gennaro, Goldfeder, Narayanan proposed k-of-n ECDSA [ACNS’16]
 Lindell proposed efficient computation for 2-of-2 ECDSA [CRYPTO’17]

* This paper shows how to do it on secure, but very restricted smartcard
— 2-0f-2, but with some trust assumptions, k-of-n ECDSA also possible

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

o~

Threshold cryptography

Formulated by Yvo Desmedt [Crypto'87]

Principle
- Private key split into multiple parts (“shares”)

- Shares used (independently) by separate parties during a protocol to perform
desired cryptographic operation

- If enough shares are available, operation is finished successfully
Properties
- Better protection of private key (single point of failure removed)
- Key shares can be distributed to multiple parties (check policy condition)
- Resulting signature may be indistinguishable from a standard one (e.g., ECDSA)

Significant research progress made in the cryptocurrency context

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Threshold multiparty signatures

« “"Easy” with RSA or Schnorr-based signatures
— RSA: Shoup [EUROCRYPT'00] ... Buldas et.al. [ESORICS’17] (Smart-ID, 4M users)
— Schnorr: first threshold protocols already in 199x [CRYPTO’95]
« But Schnorr sig. protocol was patented (expired 2010) => small overall uptake
* Recent non-interactive and practical FROST [SAC’20], MuSig2 [CRYPTO’21]

- “Efficient” with pairing-based cryptosystems (BLS, non-interactive)
* Threshold variant of ECDSA is significantly more complicated
— Significant breakthroughs and speedups recently (mainly due to cryptocurrencies)

— Uses computing of Oblivious Linear Evaluation (OLE) for mult. of secret shares
 Fully practical on common CPUs, but complicated on smartcards

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS Credit Wikimedia Commons

Cryptographic smart cards

« SC is quite powerful device (for its size)
— 8-32 bit processor @ 5-50MHz
— persistent memory 32-200+kB (EEPROM)
— volatile fast RAM, usually <<10kB
— truly random generator, cryptographic coprocessors
— JavaCard Virtual Machine (bytecode, but very slow)

* For environments where attacker has physical access
— FIPS140-2/3, security Level 4, Common Criteria EAL4-6+

* 9-10 billion units shipped every year (EUROSMART)

* Three main things to wrestle with:

— Lack of algorithmic and large types (Bigint) support on card
— Low memory (~kBs of RAM) and CPU performance (@50MHZz)
— Restricted access to card’s cryptographic APl (no Bigint multiply) °

e e s e B BT . N e s DAt i L

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

CR&,CS

(k-of-n) ECDSA (on smartcards)

« Single-party ECDSA directly supported by almost all modern smartcards
— ALG_ECDSA SHA, accelerated by dedicated coprocessor (scalar multiplication)

« k-of-n ECDSA requires multiplication of two (or more) secretly shared
values computing Oblivious Linear Evaluation (OLE)
— OLE is commonly constructed using:
1. Oblivious transfer (OT), computation and high communication overhead
2. Or partially homomorphic encryption (e.g., Paillier’s cryptosystem)
— Allows for hidden addition of plaintexts by multiplication of ciphertexts
— Requires computation of numerous large public-key operations (~RSA)
— Expensive range proofs required to prevent overflow/wrap-around attacks

« Deemed too expensive for smartcards ®

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Lindell’s 2p-ECDSA (exactly two parties) [CRYPTO’17]

 Partially homomorphic encryption of inputs using Paillier’s cryptosystem
— But does not require costly zero-knowledge range proofs
— Lindell’s trick: in the two-party setting, the party that would otherwise need to verify
the range proof can instead compose and verify the resulting signature
 Palllier's homomorphic encryption still too memory heavy for smartcard
— Only few kilobytes in data transmission total (card communication speed relevant)

— Decryption of Paillier’s ciphertext can be accelerated using the modular
exponentiation coprocessor available on smartcards

- faster than if done on main slow CPU@50MHz) + few optimization trick

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

Responding

Initiating

f p

Lindell’s 2p-ECDSA on smartcards B

 Lindell’s protocol is asymmetric e
— Initiating party only does one P.’s decryption R, = ., G

— Responding party several operations with w1 = DLPoK(k1, G)

Paillier’s ciphertexts
« Make card to be initiating party

— But... card only respond to requests verify ¢ = H(f,m2) A
R = k1R

— Synthetic message to start protocol

- @
ms 1A,)

ko < Z;

R2 = koG

w2 = DLPoK(k2, G)
¢ = H(R2,m2)

verify m;

R = koRy

s1 = D(e)
s=ky s1 modr

verify s
|

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

Feature Firstin JC<221 JC222 JC302 JC304 JC3IO5

version (21 cards) (26 cards) (12cards) (29 cards) (11 cards)

Truly random number generaior

TRNG (ALGSECURE.RANDOM) <21 165 10605 100%: 1005 100%

Block ciphers used for encryption or MAC

DES (ALG_DES_CBC_NOPAD) =21 100% 100% 100% 100% 100%
AES (ALG_AES_BLOCK_128_CBC_NOPAID) 220 52% 96% 100 1005 100%:

Wh at real car d SO p en |y Su p p 0O rt’) KOREANSEED ALGKOREANSEEDCOCNOPADY 222 3% &% W 0%

Public-key algorithms based on modular arithmeric

1024-bit RSA {ALG_RSA(_CRT) LENGTH_RSA_1024) < 2.1 T6% 96%: 100% 93% 82%
2048-bit RSA (ALG_RSA(_CRT) LENGTH_RSA_2048) =21 67% 96% 100% 93% 82%
4096-bit RSA (ALG_RSA({_CRT) LENGTH_RSA_4096) 3.01 0% 0% 0% 3% 0%

- Not large numbers operations T I S S SR

Public-key algorithms based on ellipiic curves

.]]] L) 192-bit ECC (ALG_EC_FP LENGTH_EC_FP_192) 2.2.1 5% 62% 83% 66% 82%
o D efl n Ite Iy n Ot P a I I I I e r S S C h e m e @ 256-bit ECC (ALG_EC_FP LENGTH_EC_FP_256) 3.0 (¥ 505 5% O 2%
384-bit ECC (ALG_EC_FP LENGTH_EC_FP_384) 3.0 0% 12% 17% 62% 82%
521-bit ECC (ALG_EC_FP LENGTH_EC_FP_521) 304 (1 4% B 45%: 82%
ECDSA SHA-1 (ALG_ECDSA_SHA) 2.20 24% 4% 100% 69% 82%
ECDSA SHA-2 (ALG_ECDSA_SHA_256) 3.0 5% 12%: 100 69% 82%
ECDH IEEE P1363 (ALG_EC_SVDP_DH) 2.2.1 29% B1% 100% 69% 82%

= - TEEE P1363 plain coord. X (ALG.EC_SVDP.DH.PLAIN) 3.01 5% 4% 67% 48% 82%
e JC A|g [est project (SI nce 2()07) R XY OCSIEILEANY) 305 0% 06t mm mm
Maodes of operation and padding modes

https://github.com/crocs-muni/JCAIgTest/ v acm T

CCM, GCM modes (CIPHER_AES.CCM, CIPHER_AES.GCM) 3.05 0% 0% % 0% 0%
. PKCS1, NOPAD padding <21 95% 100% 100% 100% 100%
—_— Support tested d I reCtIy On real Cards (100+) PKCS1 OAEP scheme (ALG.RSA_PKCS1_OAEP) £2.1 14% 3% 8% 1% 82%
PKCS1 PSS sheme (ALG_RSA_SHA_PKCS1_PSS) 3.0.1 14% 199% 83% 41% 100%
. . . ISO14888 padding (ALG.RSA_ISO14888) <21 14% 129 8% 0% 0%
—_ CO m m u n |ty- p rOV| d ed reS u ItS | n O pe n d b 1509796 padding (ALG_RSA_SHA_IS09796) <21 81% 100% 100% 86% 100%
1509797 padding (ALG.DES.MACE_IS09797 M 1/M2) <21 90% 100% 100% 100% 100%
. Hash functions

— RSA, ECDSA, ECDH... (called in full, no =& T S
. . SHA-1 (ALG_SHA) <2l 95% 100% 100% 100% 100%
Intermediate access or code chan g e) SHA-256 (ALG.SHA 256 222 ww o ww % om0
SHA-512 (ALG.SHA_512) 222 5% 23% 25% 90% 100%

cwET 305 0% 0% % 0% 0%

P- Svenda, R . KV&S”OVSky, I . Nagy, A. DUfka: \JCAlgTeSt: RObUSt |dent|flcat|0n ﬁﬁd ianavaCa.n:l J:LP[. For a given featl;nla, the version column specifies
the subsequent columns show its availability in cards reporting particular

metadata for certified smartcards https://crocs.fi.muni.cz/papers/jcalgtest secrypt22 ctodand maximally supportcd version of the javacard.framework pack-

n were not included.

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/crocs-muni/JCAlgTest/
https://crocs.fi.muni.cz/papers/jcalgtest_secrypt22

CR&,CS

JCMathLib: open JavaCard library for low-level operations

« JCMathLib extended to support Paillier’s decryption

— JCMathLib typically works with ~256bit integers, Paillier decryption uses integers up to 4096b
— Will (typically) not fit into RAM, needs utilization of card’s persistent storage

* Modular exponentiation in current smartcards support at most 4096-bit moduli ®
— Not enough as we need larger modulo operations (for n=4096)
— Chinese remainder theorem (CRT) used to split into smaller steps with knowledge of n=p*q

« With CRT, plaintext first computed with p and g separately then Garner-style combination

— Lindell's protocol with 256-bit curve (ECDSA) and 4096-bit n (Palillier), valid plaintexts are
always smaller than the factors (p and q) => combination is unnecessary => computation
performed with only one factor (say p)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

Smarteard (o2, X, n, g, A, 1) ‘

Performance on NXP JCOP4 J3R180 —m sz

Ry = kG

 Full Lindell’'s 2-of-2 protocol (with 4096-bit Palllier) O27MS 7, = DLPoK (k.. &

Cc = H(RQ,TJ’Q)
— Low trust requirements (everything computed on-card)
— Requires 5932 ms of on-card computation

Rl_.?n_]

Supported setups|Trust required|Performance 186ms> verify
Lindell’s protocol [22] 2-out-of-2 low 5932 ms for

"R=koRy
- Heavily utilizes (open-source) JCMathLib library 51 = D(e)
N L . 5119ms B
— significant further speedup possible if native access to s=ky's; mod7
platform is available (especially the last step) — verify s

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

FURTHER SPEEDUPS

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Approach 2: Two-party protocol with multiplication triples

* The most expensive part is multiplication of secretly shared values
— Speedup using well-known Beaver’s trick (additive secret shares triples)
* Independent of the multiplied values => no need for secrets knowledge
« Generated by trusted dealer or in distributed way by SPDZ [ESORICS’13]

- Adaptation of Dalskov et al. [ESORICS’20] k-ECDSA to 2-of-2

 Offload of multiplication triples from card to host using authenticated
encryption (to overcome card’s limited memory)

 1800ms sign Supported setups|Trust required|Performance
Lindell’s protocol |22] 2-out-of-2 low 5932 ms
Multiplication triples 2-out-of-2 medium 1800 ms

Two-party ECDSA with JavaCar

CR&,CS

Approach 3: Presignatures

« Most efficient way of constructing threshold ECDSA signatures

— Pre-signature: and =[k1-x.]and x-coordinate r of point R=[k]G

— Final signhature (r,s) for messagem : [s] = - H(m) + (203ms)
* Who will compute presignatures?

1. Very efficiently by trusted dealer given access to all parties’ key shares (x.)

2. Trust-minimized distributed protocol for generating presignatures (e.g., Doerner
et al. [EPRINT23] — but if smartcard involved => very long computation

3. Usage of Beaver’s multiplication triples to speedup distributed computation of
presignatures for option 2. (tradeoff between trust and speed)

 Allows for generic t-of-n ECDSA! (t, n fixed during precomputation)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

piy

CHESS
Conclusions

* Even 2-of-2 ECDSA signatures have many practical usage scenarios
— Less parties involved => higher requirements for share protection
— Yet execution on smartcard previously deemed (very ©) impractical

« Careful selection of a protocol, ordering of parties and operations used
make It efficiently computable even without proprietary interfaces
— 2-0f-2 ECDSA, Paillier’s decryption on-card (for up to 256-bits values)

« Open-source code avallable
— Fully on card: https://github.com/crocs-muni/JC2pECDSA/
— With precomputations: https://github.com/crocs-muni/JCPreECDSA/

. | .? /
Questions /[~

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/crocs-muni/JC2pECDSA/
https://github.com/crocs-muni/JCPreECDSA/

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

References

[CRYPTO’95] Langford, S.K. Threshold DSS Signatures without a Trusted Party. In CRYPTO’ 95. LNCS 963. Springer
[EUROCRYPT’00] Shoup, V. Practical Threshold Signatures. In EUROCRYPT 2000. LNCS 1807. Springer.

[PKC’03] A. Boldyreva, Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature
Scheme. In PKC 2003. LNCS 2567. Springer.

[ESORICS’13] Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority—
or: breaking the SPDZ limits. In ESORICS 2013, Springer.

[ACNS’16] Gennaro, R., Goldfeder, S. and Narayanan, A., Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet
security. In ACNS 2016, Springer.

[CRYPTO’17] Lindell, Y., Fast secure two-party ECDSA signing. In Crypto 2017. Springer.

[ESORICS’17] Buldas, A., Kalu, A., Laud, P., Oruaas, M. Server-Supported RSA Signatures for Mobile Devices. In ESORICS 2017. LNCS
10492. Springer.

[SAC’20] Komlo, C., Goldberg, I. FROST: Flexible Round-Optimized Schnorr Threshold Signatures. In Selected Areas in Cryptography. SAC
2020. LNCS 12804. Springer.

[ESORICS’20] Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSECkeys via threshold ECDSA from generic
MPC. In ESORICS2020, Springer (2020).

[CRYPTO’21] Nick, J., Ruffing, T., Seurin, Y. MuSig2: Simple Two-Round Schnorr Multi-signatures. In CRYPTO 2021. LNCS 12825.
Springer.
[EPRINT’23] Doerner, J., Kondi, Y., Lee, E., et al.: Threshold ECDSA in three rounds. Cryptology ePrint Archive (2023)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025 https://crocs.fi.muni.cz @CRoCS_MUNI

