
https://crocs.fi.muni.cz @CRoCS_MUNI

1Centre for Research on Cryptography and Security, Masaryk University, Czechia
2Cybernetica, Estonia

Two-party ECDSA with

JavaCard-based smartcards

Antonín Dufka1, Peeter Laud2, Petr Švenda1

*Funded by the European Union under Grant Agreement No. 101087529 (CHESS project)

https://crocs.fi.muni.cz @CRoCS_MUNI

Overview

• Overall goal: 2-of-2 ECDSA with one party being cryptographic

smartcard, second party being mobile phone/PC/server…

1. Better protection of private key,

2. Possibility of enforcement of a signing policy,

3. Easy key revocation functionality

4. …

• Gennaro, Goldfeder, Narayanan proposed k-of-n ECDSA [ACNS’16]

• Lindell proposed efficient computation for 2-of-2 ECDSA [CRYPTO’17]

• This paper shows how to do it on secure, but very restricted smartcard

– 2-of-2, but with some trust assumptions, k-of-n ECDSA also possible

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

ECDSA

signature

…

https://crocs.fi.muni.cz @CRoCS_MUNI

Threshold cryptography

• Formulated by Yvo Desmedt [Crypto’87]

• Principle

– Private key split into multiple parts (“shares”)

– Shares used (independently) by separate parties during a protocol to perform

desired cryptographic operation

– If enough shares are available, operation is finished successfully

• Properties

– Better protection of private key (single point of failure removed)

– Key shares can be distributed to multiple parties (check policy condition)

– Resulting signature may be indistinguishable from a standard one (e.g., ECDSA)

• Significant research progress made in the cryptocurrency context

PV204 | Secure Multiparty Computation

https://crocs.fi.muni.cz @CRoCS_MUNI

Threshold multiparty signatures

• “Easy” with RSA or Schnorr-based signatures

– RSA: Shoup [EUROCRYPT’00] … Buldas et.al. [ESORICS’17] (Smart-ID, 4M users)

– Schnorr: first threshold protocols already in 199x [CRYPTO’95]

• But Schnorr sig. protocol was patented (expired 2010) => small overall uptake

• Recent non-interactive and practical FROST [SAC’20], MuSig2 [CRYPTO’21]

• “Efficient” with pairing-based cryptosystems (BLS, non-interactive)

• Threshold variant of ECDSA is significantly more complicated

– Significant breakthroughs and speedups recently (mainly due to cryptocurrencies)

– Uses computing of Oblivious Linear Evaluation (OLE) for mult. of secret shares

• Fully practical on common CPUs, but complicated on smartcards

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

Cryptographic smart cards

• SC is quite powerful device (for its size)

– 8-32 bit processor @ 5-50MHz

– persistent memory 32-200+kB (EEPROM)

– volatile fast RAM, usually <<10kB

– truly random generator, cryptographic coprocessors

– JavaCard Virtual Machine (bytecode, but very slow)

• For environments where attacker has physical access

– FIPS140-2/3, security Level 4; Common Criteria EAL4-6+

• 9-10 billion units shipped every year (EUROSMART)

• Three main things to wrestle with:

– Lack of algorithmic and large types (BigInt) support on card

– Low memory (~kBs of RAM) and CPU performance (@50MHz)

– Restricted access to card’s cryptographic API (no BigInt multiply)
Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

EEPROM

CPU

CRYPTO

S
R

A
M

R
O

M

RNG

Credit Wikimedia Commons

2.5mm

3
m

m

https://crocs.fi.muni.cz @CRoCS_MUNI

(k-of-n) ECDSA (on smartcards)

• Single-party ECDSA directly supported by almost all modern smartcards

– ALG_ECDSA_SHA, accelerated by dedicated coprocessor (scalar multiplication)

• k-of-n ECDSA requires multiplication of two (or more) secretly shared

values computing Oblivious Linear Evaluation (OLE)

– OLE is commonly constructed using:

1. Oblivious transfer (OT), computation and high communication overhead

2. Or partially homomorphic encryption (e.g., Paillier’s cryptosystem)

– Allows for hidden addition of plaintexts by multiplication of ciphertexts

– Requires computation of numerous large public-key operations (~RSA)

– Expensive range proofs required to prevent overflow/wrap-around attacks

• Deemed too expensive for smartcards 
Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

Lindell’s 2p-ECDSA (exactly two parties) [CRYPTO’17]

• Partially homomorphic encryption of inputs using Paillier’s cryptosystem

– But does not require costly zero-knowledge range proofs

– Lindell’s trick: in the two-party setting, the party that would otherwise need to verify

the range proof can instead compose and verify the resulting signature

• Paillier’s homomorphic encryption still too memory heavy for smartcard

– Only few kilobytes in data transmission total (card communication speed relevant)

– Decryption of Paillier’s ciphertext can be accelerated using the modular

exponentiation coprocessor available on smartcards

• faster than if done on main slow CPU@50MHz) + few optimization trick

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

Lindell’s 2p-ECDSA on smartcards

• Lindell’s protocol is asymmetric

– Initiating party only does one P.’s decryption

– Responding party several operations with

Paillier’s ciphertexts

• Make card to be initiating party

– But… card only respond to requests

– Synthetic message to start protocol

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

InitiatingResponding

https://crocs.fi.muni.cz @CRoCS_MUNI

What real cards openly support?

• Not large numbers operations

• Definitely not Paillier’s scheme ☺

• JCAlgTest project (since 2007)
https://github.com/crocs-muni/JCAlgTest/

– Support tested directly on real cards (100+)

– Community-provided results in open db

– RSA, ECDSA, ECDH… (called in full, no

intermediate access or code change)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

P. Svenda, R. Kvasnovsky, I. Nagy, A. Dufka: JCAlgTest: Robust identification

metadata for certified smartcards https://crocs.fi.muni.cz/papers/jcalgtest_secrypt22

https://github.com/crocs-muni/JCAlgTest/
https://crocs.fi.muni.cz/papers/jcalgtest_secrypt22

https://crocs.fi.muni.cz @CRoCS_MUNI

JCMathLib: open JavaCard library for low-level operations

• JCMathLib extended to support Paillier’s decryption

– JCMathLib typically works with ~256bit integers, Paillier decryption uses integers up to 4096b

– Will (typically) not fit into RAM, needs utilization of card’s persistent storage

• Modular exponentiation in current smartcards support at most 4096-bit moduli 

– Not enough as we need larger modulo operations (for n=4096)

– Chinese remainder theorem (CRT) used to split into smaller steps with knowledge of n=p*q

• With CRT, plaintext first computed with p and q separately then Garner-style combination

– Lindell’s protocol with 256-bit curve (ECDSA) and 4096-bit n (Paillier), valid plaintexts are
always smaller than the factors (p and q) => combination is unnecessary => computation

performed with only one factor (say p)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

Performance on NXP JCOP4 J3R180

• Full Lindell’s 2-of-2 protocol (with 4096-bit Paillier)

– Low trust requirements (everything computed on-card)

– Requires 5932 ms of on-card computation

• Heavily utilizes (open-source) JCMathLib library

– significant further speedup possible if native access to

platform is available (especially the last step)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

627ms

186ms

5119ms

https://crocs.fi.muni.cz @CRoCS_MUNI

FURTHER SPEEDUPS

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

Approach 2: Two-party protocol with multiplication triples

• The most expensive part is multiplication of secretly shared values

– Speedup using well-known Beaver’s trick (additive secret shares triples)

• Independent of the multiplied values => no need for secrets knowledge

• Generated by trusted dealer or in distributed way by SPDZ [ESORICS’13]

• Adaptation of Dalskov et al. [ESORICS’20] k-ECDSA to 2-of-2

• Offload of multiplication triples from card to host using authenticated

encryption (to overcome card’s limited memory)

• 1800ms sign

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

Approach 3: Presignatures

• Most efficient way of constructing threshold ECDSA signatures

– Pre-signature: [k−1] and [z]=[k−1⋅xi]and x-coordinate r of point R=[k]G

– Final signature (r,s) for message m : [s] = [k−1]⋅ H(m) + [z] (203ms)

• Who will compute presignatures?

1. Very efficiently by trusted dealer given access to all parties’ key shares (xi)

2. Trust-minimized distributed protocol for generating presignatures (e.g., Doerner

et al. [EPRINT’23] – but if smartcard involved => very long computation

3. Usage of Beaver’s multiplication triples to speedup distributed computation of

presignatures for option 2. (tradeoff between trust and speed)

• Allows for generic t-of-n ECDSA! (t,n fixed during precomputation)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

Conclusions

• Even 2-of-2 ECDSA signatures have many practical usage scenarios

– Less parties involved => higher requirements for share protection

– Yet execution on smartcard previously deemed (very ☺) impractical

• Careful selection of a protocol, ordering of parties and operations used

make it efficiently computable even without proprietary interfaces

– 2-of-2 ECDSA, Paillier’s decryption on-card (for up to 256-bits values)

• Open-source code available

– Fully on card: https://github.com/crocs-muni/JC2pECDSA/

– With precomputations: https://github.com/crocs-muni/JCPreECDSA/

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

Questions

https://github.com/crocs-muni/JC2pECDSA/
https://github.com/crocs-muni/JCPreECDSA/

https://crocs.fi.muni.cz @CRoCS_MUNITwo-party ECDSA with JavaCards, ACNS'25, 24.06.2025

https://crocs.fi.muni.cz @CRoCS_MUNI

References

[CRYPTO’95] Langford, S.K. Threshold DSS Signatures without a Trusted Party. In CRYPTO’ 95. LNCS 963. Springer

[EUROCRYPT’00] Shoup, V. Practical Threshold Signatures. In EUROCRYPT 2000. LNCS 1807. Springer.

[PKC’03] A. Boldyreva, Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature

Scheme. In PKC 2003. LNCS 2567. Springer.

[ESORICS’13] Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority–

or: breaking the SPDZ limits. In ESORICS 2013, Springer.

[ACNS’16] Gennaro, R., Goldfeder, S. and Narayanan, A., Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet

security. In ACNS 2016, Springer.

[CRYPTO’17] Lindell, Y., Fast secure two-party ECDSA signing. In Crypto 2017. Springer.

[ESORICS’17] Buldas, A., Kalu, A., Laud, P., Oruaas, M. Server-Supported RSA Signatures for Mobile Devices. In ESORICS 2017. LNCS

10492. Springer.

[SAC’20] Komlo, C., Goldberg, I. FROST: Flexible Round-Optimized Schnorr Threshold Signatures. In Selected Areas in Cryptography. SAC

2020. LNCS 12804. Springer.

[ESORICS’20] Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSECkeys via threshold ECDSA from generic

MPC. In ESORICS2020, Springer (2020).

[CRYPTO’21] Nick, J., Ruffing, T., Seurin, Y. MuSig2: Simple Two-Round Schnorr Multi-signatures. In CRYPTO 2021. LNCS 12825.

Springer.

[EPRINT’23] Doerner, J., Kondi, Y., Lee, E., et al.: Threshold ECDSA in three rounds. Cryptology ePrint Archive (2023)

Two-party ECDSA with JavaCards, ACNS'25, 24.06.2025

