

Lessons learned from blackbox analyses of software and hardware cryptographic implementations

And what can be expected in PQC future?

Petr Švenda Svenda@fi.muni.cz S@rngsec Centre for Research on Cryptography and Security, Masaryk University Joint work with many amazing people from CRoCS - thank you all!

CR··CS

Centre for Research on Cryptography and Security

*Funded by the European Union under Grant Agreement No. 101087529 (CHESS project)

www.fi.muni.cz/crocs

We analyze blackbox implementations as academics

- As much as possible is kept proprietary (IP, JIL rating, certification req.)
 - Design details, hardware layout, firmware code, JCRE, packages, vendor's API...

CROCS

Vendor

- Great understanding of target implementation (whitebox)
- Limited knowledge in security testing, advanced attacks, equipment
- Conflict between time-for-testing and time-to-market
- Great knowledge in security testing, specialized equip., process knowledge
- Moderate understanding of target implementation (whitebox, but !enough time)
- Conflict between tough analysis and keeping vendor as a customer

Scheme (BSI, ANSSI, NIAP...)

3

- Some experts, no direct testing ("impartial")
- Aim to keep security bar reasonably high
- Stronger ties to bigger players

 Lack of knowledge, test outsourcing (certification)

Eval lab

User

00

Ideal setup for finding bugs

- 1. Complete knowledge of design and implementation (whitebox)
- 2. Great experience in security testing, specialized equipment, automated testing, advanced attacks, vulns in related devices
- 3. A lot of time for testing and creative thinking

Academia, security researchers

- Small understanding of implementation (frequently blackbox)
 - Great knowledge of some advanced attacks, some equipment
 - A lot of time, focus on publishable, more complex results
 - Not focused on specific device, wide-scale testing suitable

6

M. Nemec, M. Sys, P. Svenda, D. Klinec, V. Matyas: The Return of Coppersmith's Attack..., ACM CCS 2017

The usage domains affected by the vulnerable library

| P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

DIFFICULTY OF ANALYSIS OF CRYPTOGRAPHIC DEVICES IN TIME

CRତCS

Independent analysis of cryptographic hardware

- ~2000
 - Fresh powerful side-channel attack ideas (SPA/DPA/CPA/Templates...)
 - No card samples for testing (minus points in JIL rating), heavy reliance on black-box as protection
 - CC/FIPS reports very different variable (no template), little to no public info about testing performed
 - No mature open-source testing tools, scattered knowledge
- ~2010-2017
 - Advanced testing setups available at vendor and evaluation labs
 - Availability of (some) smartcards in small quantities for independent testing
 - Practical application of more attacks (lattice attacks on ECC nonce leaks...)
 - Growing open-source community (Chipwhisperer, Sakura, ASCAD dataset, JCAIgTest...)
- ~2018-now
 - Deep learning SCA attacks (boom from 2016/17), improved lattice-based attacks, PQC SCA...
 - Academic researchers typically focus on white-box targets (FPGA...), not smartcards!
 - Only (somewhat) older cards available for testing (1-2 generations back, unofficial samples...)
- 8 | P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

CR⊙CS 's way

- Focusing on new attacks on blackbox targets
- 1. Design technique to probe cryptographic target
- 2. Implement open-source tool for testing it

- 4. Spot biases and develop academically publishable exploitation method
- Ideal outcome: method can be published, real-world impact can be demonstrated, open analysis tool available for others and future (CI)

Reverse engineering (steps 1.-3.) typically revealed some weakness (step 4.)

- Wide-range testing is amplifying (otherwise low) changes to find something!

RSA pubkey origin attribution (no CVE)

[Svenda et.al., The Million-Key Question – Investigating the Origins of RSA Public Keys, USENIX'16] [Janovsky et.al., Biased RSA private keys: Origin attribution of GCD-factorable keys, ESORICS'20]

ROCA (CVE-2017-15361)

[Nemec et.al., The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli, ACM CCS'17]

Minerva (CVE-2019-15809)

[J.Jancar, V.Sedlacek, P.Svenda, M.Sys. Minerva: The curse of ECDSA nonces, CHES'20]

[J.Jancar, V.Suchanek, P.Svenda, V. Sedlacek, L. Chmielewski. pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis, CHES'24]

TPMScan (CVE-2020-25082, "NineSig" - no CVE)

[Svenda et.al., TPMScan: A wide-scale study of security-relevant properties of TPM 2.0 chips, CHES'24]

(stay tuned)

[responsible disclosure period ©]

EXAMPLE: MINERVA ECC VULNERABILITIES

11 | P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

https://minerva.crocs.fi.muni.cz/

https://minerva.crocs.fi.muni.cz/

13 P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

Minerva vulnerability CVE-2019-15809 (10/2019)

- Athena IDProtect smartcard (CC EAL 4+)
 - FIPS140-2 #1711, ANSSI-CC-2012/23
 - Inside Secure AT90SC28872 Microcontroller
 - Root cause: Upper layer used faster but insecure (unprotected) modMult()
- Similar issue in Libgcrypt, wolfSSL, MatrixSSL,⁴ Uses additive scalar bilinding. Crypto++, SunEC/OpenJDK/Oracle JDK
- Enough to extract whole ECC private key in 20-30 min
 - ~thousands of signatures + lattice-based attack

Type	Name	Version/Model	Scalar multiplier	Leakage
	OpenSSL	1.1.1d	Montgomery ladder ¹	no
	BouncyCasle	1.58	Comb method ²	no
	SumFC	IDK 7 - IDK 12	Window-NAF	no
	Suille	JUK 7 - JUK 12	Lopez-Dahab ladder	yes
	WolfSSL	4.0.0	Sliding window	yes^3
~	BoringSSL	974f4dddf	Window method	no
ar	libtomcrypt	v1.18.2	Sliding window	no
ibr	libgcrypt	1.8.4	Double-and-add	yes
Ц	Botan	2.11.0	Window method ⁴	no
	Microsoft CNG	10.0.17134.0	Window method	no
	mbedTLS	2.16.0	Comb method	no
	MatrixSSL	4.2.1	Sliding window	yes
	Intel PP Crypto	2020	Window-NAF	no
	Crypto++	8.2	unknown	yes
	Athena IDProtect	010b.0352.0005	unknown	yes
rd	NXP JCOP3	J2A081, J2D081, J3H145	unknown	no
Ca	Infineon JTOP	52GLA080AL, SLE78	unknown	no
	G+D SmartCafe	v6, v7	unknown	no

¹ Applies the fixed bit-length mitigation.

² Uses many scalar multiplication algorithms.

³ Likely not exploitable, due to a small amount of leakage

EXAMPLE: TRUSTED PLATFORM MODULES

Credits: Infineon, Asus, Microsoft

CRତCS

Trusted Platform Modules (TPMs), from 2016

17 | P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

Year	Vulnerability / nickname	Hardware target	Attack class	Public ID	Discoverer	lts
1996	RSA timing attack	Smart-card	Side-channel – timing	—	Academic (Kocher)	esul
1997	Boneh–DeMillo–Lipton RSA-CRT fault	Smart-card	Physical – fault	—	Academic (Stanford)	ith r
1999	Differential Power Analysis (DPA)	Smart-card	Side-channel – power	_	Academic (Kocher et al.)	ic v
2004	"Sorcerer's Apprentice" voltage/laser survey	Smart-card	Physical – fault	_	Evaluation-lab + academic	Iduo
2008	MIFARE Classic / CRYPTO-1 break	Contactless card	Logic + side-channel	_	Academic (Radboud U.)	not p
2011	Java Card operand-stack laser fault	Java Card	Physical – laser	—	Academic (Télécom ParisTech)	ors r
2011	Mifare DESFire MF3ICD40	Smart-card	Side-channel – power	_	Academic (Oswald&Paar)	ende
2013	Weak RSA key generation (factorable)	Taiwanese Citizen-ID	Logic – keygen, TRNG	—	Academic (Bernstein et al.)	* +
2013	Yubikey 2 OTP key extraction	Smart-card	Side-channel – power	_	Academic (Oswald et al.)	cial
2014	EMV foreign-currency limit bypass	EMV chip card	Logic – protocol	—	Academic (Newcastle U.)	mer
2015	HMAC_SHA1 key extraction	DS28E01/DS2432 IC	Side-channel – power	—	Academic (Oswald)	omi
2017	ROCA weak RSA keygen	Infineon cards & TPMs	Logic – math	CVE-2017-15361	Academic (Masaryk U.)	0
2019	Java Card RI multiple bugs	Java Card	Logic – code	Oracle CPU (no CVE)	Commercial (Security Exploration	is)
2019	Yubikey reduced initial randomness on FIPS	Yubikey FIPS token	Logic –randomness	YSA-2019-02	Vendor (Yubico)	
2019	Deep learning on RSA implementations	ARM Core SC 100 EAL4+ IC	Side-channel – EM	—	Evaluation-lab + vendor	
2019	TPM-Fail ECDSA timing leaks	Intel fTPM & ST dTPM	Side-channel – timing	CVE-2019-11090, -16863	Academic	
2020	Estonian ID-card duplicate keys	National ID smart-card	Logic – key mgmt	—	Academic (Paršovs)	
2021	NXP SmartMX EM leak (Titan/SJTT)	SmartMX & A7x secure MCUs	Side-channel – EM	CVE-2021-3011	Commercial (NinjaLab)	
2021	STSAFE-J / J-SAFE3 ECDSA leak	Java Card SE	Side-channel – timing	CVE-2021-43392/43393	Vendor (ST)	
2023	TPM 2.0 ref-lib OOB R/W	Discrete & firmware TPM	Logic – mem-corr	CVE-2023-1017/1018	Commercial (Quarkslab)	
2023	faulTPM full-state extraction	AMD fTPM	Physical – fault	—	Academic (TU Berlin)	
2023	STSAFE-A1 middleware overflow	Secure element	Logic – buffer-overflow	CVE-2023-50096	Commercial (Elttam)	
2024	TPMScan nonce-bias & timing	Multi-vendor TPM 2.0	Side-channel	—	Academic (Masaryk U.)	
2024	NineSig: Intel fixed nonce bits	Intel fTPM	Logic – randomness	_	Academic (Masaryk U.)	
2024	EUCLeak EM leak in Infineon lib	Infineon SE (YubiKey 5/HSM 2)	Side-channel – EM	CVE-2024-45678	Commercial (NinjaLab)	
2025	YubiKey CTAP v2 partial-sig check	YubiKey 5/Bio/HSM 2	Logic – protocol	CVE-2025-29991	Vendor (Yubico)	

Bias in past publicly reported vulnerabilities

- Based on public reports, vulnerabilities seems to be primarily found by academic researchers and freelancers/independent labs
 - People operating in black-box attacker model => harder to spot problems (than in white-box)

- Public disclosure might be a side-effect of academics desire to publish and independent commercial labs to advertise themselves
- Rarely vendor itself (Yubico seems to be exception)

- How likely is that blackbox analysis spotted all the vulnerabilities?
- Likely many problems completely missed (blackbox) or neglected (if second defensive layer)
- Likely many problems undisclosed (vendor/eval.labs: before/after deployment/certification)
- Reported vulnerabilities with low visibility (no CVE, no public security bulletin...)
 - E.g. Intel fTPM "NineSig" vulnerability (TPMScan), no CVE because product is "outdated"

HOW THE SITUATION WILL CHANGE FOR PQC?

20 | P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

Attacker capabilities will inevitably improve over time

- 1. Completely novel attack principle (e.g., DPA by Kocher)
 - Hard to defend against, but (fortunately) infrequent
- 2. Significant improvement of previously known attack (e.g., ML SCA)
 - Security margin is important, pre-emptively upping device security even if not immediate threat (not favored by certification)
- 3. Device-specific tweaks making known attacks practical (e.g., ROCA)
 - Following best practices, using the most mature and battle-tested code (which is typically not vendor's own proprietary implementation!)
- 4. Insufficient testing (e.g., TPMFail, Minerva, NineSig...)
 - Using mature implementation, continuous testing

Common cause of vulnerabilities presented

- Long time to discovery => high impact due to penetration of market
- As much as possible is kept proprietary
 - Intellectual Property reasons, Certification scheme requirements (JIL rating...)
 - Design details, hardware layout, firmware code, JCRE, packages, vendor's API...
 - Another layer of defense, but also false sense of security
- Certification is expensive, change requires recertification => no change
 - Clear bugs will be fixed (e.g., ROCA) or possibly put out of scope (e.g., EUCLeak)
 - Improved protection measures will not be included unless necessary
- Analysis performed by vendor and eval lab is time-bounded
 - State-level attacker or academia researchers can devote years of work (interleaved)
 - Creative attack ideas typically cannot be squeezed defined 4 weeks evaluation period!

PQC ADOPTION IN CERTIFIED PRODUCTS

23 | P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

sec-certs

Images Videos Short videos Forums News Web More -

🔶 Al Overview

A comprehensive list of certified devices specifically utilizing Post-Quantum Cryptography (PQC) algorithms is not readily available. PQC algorithms are relatively new, and the certification process for devices incorporating them is ongoing. While devices with PQC support are emerging, a universally accepted list is still being developed.

Key Points:

PQC is a growing field:

NIST recently standardized PQC algorithms, making them ready for widespread adoption.

Certification is ongoing:

2. ChatGPT o3 PQC search: not bad, but only 3+5 certs (CC+FIPS140)

- 3. <u>https://sec-certs.org</u> PQC search: <u>Common Criteria</u> (29), <u>FIPS140</u> (20)
- 4. <u>https://sec-certs.org</u> PQC search with query generated by LLM
 - All PQC algorithms in Whoosh language syntax" + search

Certified devices with PQC algorithms?

Google search for certified products with PQC

5. https://sec-certs.org with LLM-based chatbot (Llama 4 Scout)

PQC certified products in CC

- Multi-Party Cryptographic Appliance "Trident v2.1.3" OCSI/CERT/CCL/02/2020/RC (from 09/2020)
 - SPHINCS+ algorithm (inside larger HSM)
- 16x Infineon OPTIGA TPM SLB9672 (from 05/2021).
 - XMSS: eXtended Merkle Signature Scheme (large signs)
- 2x Samsung chips with PQC (03,07/2024)
 - CRYSTALS engine (Kyber, Dilithium)
 - Smartcard chip EAL6+ ANSSI-CC-2024/26 (22.07.2024)
 - "No security functionality is claimed"
 - Mobile SoC EAL5+ NSCIB-CC-2300085-01-CR (26.03.2024)
 - "Out of ToE"

https://sec-certs.org/cc/ec832cac23bb8b42/

1.2.2 TOE Definition

- The S3SSE2A single-chip CMOS micro-controller is designed and packaged specifically for "Smart Card" applications.
- 7 The SC300 CPU architecture of the S3SSE2A microcontroller follows the Harvard style, that is, it has separate program memory and data memory. Both instruction and data can be fetched simultaneously without causing a stall, using separate paths for memory access.
 - The main security features of the S3SSE2A integrated circuit are:
 - Environmental & Life time detector & filters
 - Active shield
 - Dedicated tamper-resistant design based on synthesizable glue logic and secure topology
 - Dedicated hardware mechanisms against side-channel attacks
 - Secure DES and AES Symmetric Cryptography support
 - Secure TORNADO-E coprocessor supports a Montgomery type multiplication, a modular addition/subtraction, a modular exponentiation (out of TSF), and a computation for the square of a montgomery constant up to 4128-bit operand sizes

PQC(Post-Quantum Cryptography) engine(CRYSI LS)(It is out of TOE

PARITY/ CRC-32 calculators

NOTE I: No security functionality is claimed	or the following hardware blocks in this	TOE or use cases:
 DMA (PL080) SSP_DMA Key manager KEYMGT in SYSCON 	Į	
SAMSUNG ELECTRONICS	13/131	SAMSUNG
24)		
		Public
ST Lita		1 ST INTRODUCTION

• Code execution through the Secure AXI bridge (eXecute In Place, XIP)

PQC

NOTE 2: Secure functionality is claimed for the AES in the Security Controller and the AES in the CRYPTO block.

PQC certified products

- IFX_CCI_000068h... optional PQ Crypto Suite v5.00.012... (BSI-DSZ-CC-1249-2024, 12/2024) https://sec-certs.org/cc/5e551e06e7b71400
- Finally in certification scope \o/ (but not much details provided)

2. Certificate 3. Certification report 4. Security target 5. Heuristics 6. References	firmware version 80.505.04.1, optio optional HSL v04.05.0040, optional guidance documents		tional Ial UMS	public TEGRIO Security Security R Table 42	public TEGRION™ SLC21 Post-Quantum Edition Security Target Lite Security Requirements (ASE_REQ) Table 42 Cryptographic table for FCS_COP.1/CS/MLKEM/ <iter></iter>				infineor
7. Updates 3. Raw data	CSV inform	ation i	Heuris Certificate II	<iter></iter>	[assignment: list of cryptographic operations]	[assignment: cryptographic algorithms]	[assignment: cryptographic key sizes]	[assignment: list of standards]	
	Valid until Scheme Manufacturer	17.12.2024 17.12.2029 DE DE <u>Infineon Technologies AG</u>		ENC	encapsulation	ML-KEM-512 ML-KEM-768 ML-KEM-1024	ML-KEM-512, ML-KEM-768, ML-KEM-1024	[FIPS 203] ch. 6.2	
:	Category Security level Protection profiles	 ICs, Smart Cards and Smart Card-Related Devices and Systems <u>ALC_FLR.1, EAL6+</u> <u>Security IC Platform Protection Profile with</u> 		DEC	decapsulation	ML-KEM-512 ML-KEM-768 ML-KEM-1024	ML-KEM-512, ML-KEM-768, ML-KEM-1024	[FIPS 203] ch. 6.3	

POSITIVE EXAMPLE: HARDWARE WALLETS

27 | P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

Testbed with hardware wallets, from 2020

IUNI

Secure element frequently used (ECDSA, EdDSA, TRNG)

• Generate new wallet seed, sign transaction, protected seed storage

P. Svenda: Lessons Learn

29

BOLOS

PROPRIETARY OPERATING SYSTEM

https://shop.cobo.com/products/cobo-vault-essential https://coldcard.com https://trezor.io https://ledger.com

Automatically extracting data from (intentionally) nonautomatic device (cryptocurrency hardware wallet)

P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

Data collected for hardware wallets

- Random entropy as generated by wallets (100 000x)
- Signatures and nonces used for ECDSA operation (100 000x)
- (Coarse) timing of cryptographic operations
 - Host clock measurements, visual trigger, sound trigger
 - (for more time demanding SCA setups see Ledger Donjon, Kraken Labs...)
- What we found:
 - Not much 🙂
 - (no biased seed, no biased nonce, no timing dependency...)
 - Unexpected: some wallets undertook audits, but not CC/FIPS140 certifications

Why we failed for cryptocurrency hardware wallets?

- Wallets have very limited interface (limits your odds of finding something)
 - Only very narrow set of functions exposed, only high-level API available
 - Fixed EC curve domain parameters, pre-defined data structures...
- Secure-by-default primitives
 - Deterministic nonce generation for ECDSA (RFC6979)
 - Hash entropy before its use (initial entropy for mnemonic backup)
 - Seed generated from mnemonics (PBKDF2-HMAC512-2048)
- High-quality open-source implementations with permissive license
 - SatoshiLabs Trezor wallet, Ledger wallet, BitcoinDevKit...
 - Easy to copy from, easy to adopt security patches (same/similar code)...
 - (Smartcards/TPMs... have closed and different implementations)
 - => limited/no learning from vulnerability of other vendors, even if vulnerability disclosed

Conclusions

- Blackbox analysis of cryptographic targets is viable even for academics
- Wide-scale, long-running analysis is the crucial factor
 - Increase your odds by focusing on multiple target devices / libraries in parallel
 - Allows to involve more people more quickly (undergrads to research)
 - Creative attack ideas needs time (prolonged analysis timeframe)
- Disadvantage (initial lack of details) turned into advantage
 - Security with addition of obscurity layer results in obscured bugs
 - Open tools to increase transparency (no NDA burden)
- Worked for classic crypto algs, likely to work for PQC ones as well
 - But maybe with less real impact...?

Conclusions (cont.)

- Not much changed in certification ecosystem
 - System still not accommodating academic/independent researchers
 - More openness and availability of information needed
- Advent of open cryptographic hardware?
 - Open-source and mature implementations, learning from flows of others?
 - PQC harder on hardware => will come even later

34 | P. Svenda: Lessons Learnt from blackbox analysis..., SPIQE, 24.6.2025

Questions